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Thermally stimulated current transport peaks in 
insulating layers with spatially non-homogeneous 
trap distribution 

W Tomaszewiczi, J Rybicki, B Jachym?., M Chybicki and S FelizianiS 
Faculty of Technical Physics and Applied Mathematics, Technical University of Gdansk, 
Majakowskiego 11/12,80-952 Gdansk, Poland 

Received 11 April 1989 

Abstract. In the present work we have investigated the influence of spatial non-homogeneity 
of trap distribution on thermally stimulated currents (TSC) due to transport of carriers in 
insulating layers. It has been assumed that at zero time carriers are generated only in a thin 
layer near one of the contacts. We have proved that for both non-dispersive and dispersive 
transport the initial increase Of  TSC is strongly dependent on the spatial distribution of traps. 
On the other hand, the dependence ofncmaximumon electric field strength, layer thickness 
and heating rate, and in the case of dispersive transport also on the final current decay, is 
almost the same as for a homogeneous trap distribution. The analytical results have been 
found to agree satisfactorily with the results of Monte Carlo simulation of non-isothermal 
carrier transport for all the model spatial and energetic trap distributions considered. The 
possibility of determining spatial trap distribution on the basis of the measured TSC has been 
discussed. 

1. Introduction 

In the transport of charge carriers in insulators and semiconductors, the dominant role 
is often played by localised states (traps) in the forbidden gap. Fundamental progress 
in the theoretical description of dispersive transient currents, characteristic of many 
amorphous materials, has been made by Scher and Montroll(1975), Noolandi (1977a, b) 
and Schmidlin (1977) (later works are quoted in excellent review papers by Pfister and 
Scher (1978) and Marshall (1983)). The theory has been generalised to the case of 
non-isothermal transient currents (SamoC and SamoC 1980, Plans et al 1981, 1983, 
Tomaszewicz and Jachym 1984, Schrader and Kryszewski 1985, Tomaszewicz 1985). 

In all the works quoted, however, only a spatially homogeneous trap distribution 
has been considered. The assumption of spatial homogeneity of trap concentration is 
unjustified for very thin layers, where regions of near-surface non-homogeneity are 
comparable with the layer thickness. Current-time characteristics may then differ 
remarkably from those for a homogeneous trap distribution (SamoC and Zboinski 1978). 
The influence of spatial non-uniformity of trap density on multiple-trapping transient 
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currents in the case of isothermal transport has been considered by Rybicki and Chybicki 
(1988, 1989). In the present work we describe analogous results for non-isothermal 
transport. Section 2 presents the analytical solution of transport equations, which are 
compared to the results of the Monte Carlo simulation in section 3. The possibility of 
determining the spatial trap distribution on the basis of measured thermally stimulated 
currents (TSC) is discussed in section 4. Section 5 contains concluding remarks. 

2. Analytical considerations 

2.1. Transport equations 

The system of equations describing non-isothermal multiple-trapping transport of car- 
riers in layers with spatially non-homogeneous trap distribution may be written as the 
following generalisation of transport equations formulated by Plans et a1 (1981): 

a an@, t )  - [n (x ,  t )  + n,(x ,  t ) ]  + poE- = 0 at ax 

where x is spatial coordinate (0 S x S L ) ,  t is  time ( t  2 0), 5% is depth of trap (measured 
down from the bottom of the conduction band), n(x,  t )  and n,(x, t )  are concentrations 
of free and trapped carriers, respectively, n: ( x ,  t ,  %) and Nt(x ,  %) are concentrations of 
trapped carriers and traps per unit energy, td(t, %) is mean detrapping time at time t 
from the trap of depth %, p o  is microscopic mobility of carriers, E is external electric 
field applied to the layer and C, is capture coefficient. Equations (1) and (2) are the 
continuity equation and the trapping-detrapping kinetics equation, respectively. The 
trap density N,(x ,  %) may be written as 

Nt(x7 w = S ( X ) N W  (3) 
where the functions S(x) (dimensionless) and N(%) describe spatial and energetic trap 
distributions, respectively. The mean detrapping time td(t, %) is given by 

t d ( t ,  %) = vi' exp[%/kT(t)] (4) 
where v o  is a frequency factor, k is Boltzmann's constant and T(t) is temperature of the 
layer at time t. The main simplifying assumptions under which equations (1)-(4) are 
valid are: neglect of diffusion and space-charge effects; small trap occupation; and 
temperature independence of p0, C, and vo. 

Integrating (2) with the initial condition n;  (x ,  0, %) = 0 (at initial time t = 0 there 
are no trapped carriers in the layer), one obtains the following relation between the 
concentrations of trapped and free carriers: 

n,(x ,  t )  = S(x) I t  @(t ,  t ')n(x, t ' )  d t '  
0 

where function @(t,  t ' )  is given by 
w t  

@(t,  t ' )  = C, I%, N(%) exp( - J t  dt" ) d% 
t' td( t" ,  %) 

( 5 )  

and % and 76, are limits of the energetic trap distribution. 
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The current induced in the measurement circuit by the carrier motion is given by 

Z( t )  = -1 Io n(x, t)  dx 
noL 0 

( 7 )  

where Io  = enopoEA, e is elementary charge, no is concentration of initially generated 
carriers, averaged over the layer thickness L ,  and A is contact surface. In the initial 
stages of transport, when the density of free carriers on the collecting electrode is 
negligible (n(L ,  t )  = 0 ) ,  the current intensity Z( t )  may be expressed as (cf Schrader and 
Kryszewski 1985) 

where f ( t )  describes the motion of the carriers’ centroid 

x[n(x, t )  + n , ( x ,  t ) ]  dx. (9) 

2.2. Relation to equations for homogeneous trap density 

We shall assume the following inequalities to be fulfilled: n(x, t )  < n,(x, t)  and 
an(x, t)/at G dn,(x, t)/at. In the case of a homogeneous spatial trap distribution it may 
be shown that the above inequalities are valid for t % zo, where to  = L/poE  is the trap- 
free time of flight (Tomaszewicz and Jachym 1984). It may be expected that an analogous 
situation also occurs in non-homogeneous layers. 

Under those assumptions a simple relation between carrier transport in homo- 
geneous and non-homogeneous layers may be found. Introducing a new spatial coor- 
dinate 

and new notations i i (z (x) ,  t )  = n(x,  t ) ,  i i t (z(x) ,  t )  = n,(x, t ) / S ( x ) ,  equations (1) and ( 5 )  
assume identical form as in the case of the homogeneous trap distribution (Tomaszewicz 
and Jachym 1984): 

an,@, t )  an(z, t )  
at az 

+-- - 0  

i i t(z, t)  = @(t, t ’ ) i i (z ,  t’) dt’ id 
which implies that the solutions obtained previously for the homogeneous trap dis- 
tribution may be easily adopted for the non-homogeneous trap distribution case. In the 
following we confine ourselves to the situation in which the carriers are initially generated 
in an infinitesimally thin layer in x = 0. 

2.3. Non-dispersive transport 

Non-dispersive transport occurs when the carriers in the conduction band and in traps 
are in thermal quasi-equilibrium. Equation (12), which describes trapping-detrapping 
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kinetics, may then be replaced by an approximate equation (Tomaszewicz and Jachym 
1984) 

nt(z, t )  = n(z, t ) /O( t )  (13) 
where the function O ( t )  is given by 

As will be seen from subsequent equations, approximation (13) ignores broadening 
of the carrier packet. In fact, carrier transport under conditions of thermal quasi- 
equilibrium may be proved to be Gaussian in homogeneous layers (Tomaszewicz 1985). 
However, carrier dispersion, when included in the equations, does not change the 
following results significantly. 

Equation (11) can now be solved to give 

n(z, t )  = noLe(t)6[z - g t ) ]  (15) 

where 6 is the Dirac function, and 

c(t)  = lo‘ O ( t ’ )  dt‘. 

Returning to the original variables and using the properties of the 6 function one gets 

n,(x, t )  = noL6[x - f ( r ) ]  (18) 

where the position of a carrier packet is given by z [ f ( t ) ]  = [ ( t ) ,  which explicitly reads 

i,”” S(x) dx  = poE(( t ) .  

The time dependence of TSC, according to (7) or (8), is given by 

where H is the unit step function. As is easily seen, the TSC depends distinctly on the 
spatial trap distribution, being inversely proportional to the local trap density. According 
to equation (20) the TSC decays immediately at the moment re,  corresponding to the 
effective carrier time of flight; z, is given by f ( r e )  = L ,  which with the aid of (19) may 
be written as 

C(ze) = r o s a ”  (21) 

where Sa, is the mean value of S ( x ) :  

l L  
Sa, = S(x) dx. 

According to equation (21), the time of flight z, is an increasing function of the ratio 
LIE,  and depends only on the manner and rate of heating, that is on the form of the 
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function T(t), and on Sa, given by (22). In particular, z, does not depend on the specific 
form of the spatial trap distribution S(x ) .  

2.4.  Dispersive transport 

In the case of dispersive transport, equation (12) relating trapped- and free-carrier 
concentrations, may be replaced by the approximate formula (Tomaszewicz and Jachym 
1984) 

In what follows we shall simply write @(t) instead of @(t, 0). In the case of dispersive 
transport @(t) may be given by the approximate expression 

% I  

@(t)  -- ct J-,,, N(%) d %  (24) 

where demarcation level %,(t) is given by the equation 

dt '  i, td[t', %,(t)] = 

The demarcation level % o(t)  splits traps into those which reached equilibrium occupation 
and those from which there was practically no release up to time t. 

Equation (11) with the aid of (23) solves to give 

fit(z, t )  = nozoO(t )  exp[-z@(t)]. (26) 
Returning to the original variables one gets from equations (23) and (26) 

n,(x ,  t )  = noto@(t )S(x)  exp[-z(x)O(t)]. 
The intensity of the TSC, according to (7), is given by 

The integral in the last expression cannot be calculated analytically for an arbitrary 
spatial trap distribution. However, in the following two limiting cases approximate 
formulae may be developed. 

Let us assume first that z(L)@(t) = z,S,,@(t) % 1. The exponential function in the 
integrand in (29) may then be replaced by the unit step function H [ i ( f )  - XI, where the 
function 2(t) is given by z[f(t)]O(t) = 1, that is by C'' S(X)  dx = poE/@(t) .  (30) 

The intensity of the TSC is now 

Equation (31) results also from (8) and (30), which means that thefunctionf(t) describes 



3316 W Tomaszewicz et a1 

approximately the motion of the drifting carriers' centroid. Provided the function S(x) 
does not increase too rapidly with x ,  equation (31) corresponds to the TSC increase. The 
TSC maximum should occur in a time close to the time of flight re; z, is given by the 
equationi(r,) = L ,  which, as results from (30), is equivalent to 

r0Sav@(re) = 1. (32) 

Because @(t) decreases monotonically in time, equation (31) is valid for times t 4 re. It 
may be noted that equations (30)-(32) are analogous to equations (19)-(21) for non- 
dispersive transport. Similarly as in the case of non-dispersive transport, the initial TSC 
increase depends distinctly on the spatial trap distribution (equation (31)), whereas the 
latter only weakly influences the dependences of the position of the TSC maximum on 
applied electric field, layer thickness and manner and rate of heating (equation (32)). 

Let us now consider the second limiting case: r0S,,@(t) 4 1, which is valid fort  9 re. 
The exponential function in the integrand of (29) may then be developed into a power 
series. Retaining the first two terms one gets 

Z( t )  = CZ,,~i[-dcP(t)/dt] (33) 

where 

l L  
C = ( L  - x)S(x) dx. (34) 

As is easily seen, the spatial trap distribution does not influence the shape of the final 
decay of the TSC, despite the presence of the multiplicative constant C. 

3. Numerical results and discussion 

Up till now neither the manner of heating nor the energetic and spatial distributions of 
traps have been specified. In order to calculate illustrative TSC curves we shall assume 
the linear heating scheme T(t) = To + Pt, where To is the initial temperature of the 
sample and p is the heating rate. As far as the energetic trap distribution is concerned, 
we shall use the discrete single level 

N(%) = Nod(% - %c)) (35) 

for non-dispersive transport (Z0  is trap depth), and the exponential distribution 

for dispersive transport. In equation (36) Tc is the characteristic temperature of the 
energetic trap distribution, %: is the upper edge of the distribution and No is chosen in 
such a way that the product NoS(x)  is the total trap concentration inx. The model spatial 
trap distributions are chosen to be 

S(x) = exp( - x / D )  (37) 
and 

S(x) = exp[-(L - x ) / D ] .  (38) 
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Figure 1. Non-dispersive TSC curves for a non- 
homogeneous spatial trap distribution and linear 
heating. Full curves correspond to Monte Carlo 
simulation ; broken curves correspond to approxi- 
mate solutions (19) and (20). Curves: A, trap 
distribution (37)  with LID = 0 (homogeneous 
trap distribution); B, LID = - 2 ;  C, LID = 2 ;  D,  
trap distribution (38), LID = 2;  E, homogeneous 
trap distribution with the same mean trap density 
as for C and D. Here zoP/To = t(x)S(x)p/ 
r, = 2 x 10-13, v o ~ o / p  = 5 x ioi5, uu-, = 30. 

Full curves in figure 1 show the non-dispersive TSC curves calculated with the aid 
of the Monte Carlo simulation, performed according to the algorithm described by 
Tomaszewicz (1988), which is the generalisation of the procedure used for the isothermal 
case, e.g. by Marshall (1977). The procedure consists of choosing repeatedly a random 
value of the free-carrier lifetime ~ ' ( x )  according to the equation 

z'(x) = - z(x)  In X (39) 
where z(x) is the mean trapping time in x ,  and a random value of the detrapping time 
z i ( t ) ,  which is the solution of the equation 

v o  ['"' exp (- dt' = -In Y kT(t ' )  

where X and Y are random numbers from the interval (0, l ) ,  and t is the moment of 
carrier capture. The free-carrier displacement and the resulting current in the external 
circuit are given by Ax = Lt'(x)/zo and AI = e / to .  The Monte Carlo results have been 
obtained from averaging over los carriers. 

The approximate solution (19)-(20) has been plotted using the broken curve (only 
for curves A and B in order not to complicate the figure). The discrepancies between 
the Monte Carlo results and the approximate solution occur entirely for times close to 
T,, where the temperature T,  = T(z,) corresponds to the current maximum. 

Curve A in figure 1 corresponds to the homogeneous trap density No,  and curves B 
and C to the trap density increasing and decreasing exponentially in x from the same 
trap concentration in x = 0. The differences in the position of the TSC peak height are 
attributed to different numbers of traps in the layer. The differences in the shapes of the 
calculated TSC curves are due to different spatial trap distributions. This dependence is 
more apparent if one compares the TSC calculated for different spatial trap distributions, 
the total number of traps in the layer being constant (curves C-E in figure 1). Thus 
curves C and D illustrate a strong polarity dependence of TSC in non-homogeneous 
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Figure 2. ( a )  Dispersive TSC curves for non-homogeneous spatial trap distribution and linear 
heating, T/T ,  = 0.33. Curves: A, trap distribution (37), LID = 2 ;  B, trap distribution (38), 
LID = 2. Circles and crosses are Monte Carlo simulation; full curves are calculations on the 
basis of equations (lo),  (24), (25 )  and (29); broken curves correspond to current increase 
and decrease according to equations (31) and (33)-(34), respectively. Here zop/To = 1O-Io, 
z(x)S(x)/3/To = 1.187 x ( b )  The same as (a)  but on a semi-logarithmic 
scale. 

voT0/p = 

layers. For comparison, the current for traps distributed uniformly in space with the 
same mean concentration has also been shown (curve E). 

Figures 2 and 3 show typical TSC curves in the case of dispersive transport for two 
different values of the characteristic temperature T,. Full curves have been calculated 
on the basis of equations (lo), (24), (25) and (29) for the trap density decreasing and 
increasing exponentially in x ,  with the same maximum trap density. The numerical 
results have again been compared with the Monte Carlo simulation, where to describe 
each trapping-detrapping event a third random value-the trap depth %;-was chosen 
according to the equation 

where 2 is a random number from the interval (0 , l ) .  The Monte Carlo results are shown 
in figures 2 and 3 with circles and crosses. The discrepancies between the Monte Carlo 
results and the analytical formulae obtained should be attributed to the approximations 
made in the development of equation (29). In general, the analytical solutions reproduce 
well the Monte Carlo results in the case of strongly dispersive transport (T/Tc S 0.2). 
Broken curves in figures 2 and 3 correspond to the approximate expressions for the initial 
current increase and the final current decay (equations (31) and (33)-(34), respectively). 
They agree quite well with equation (29) for the homogeneous trap distribution. 
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"k,, Figure 3. Dispersive TSC curves for non-homo- 
geneous spatial trap distribution and linear heat- 

I I ing, TIT, = 0.2. Curves: A, trapdistribution(37), 

-9.0 I I 
I 1 

However, the discrepancies grow with increasing degree of spatial non-homogeneity of 
the trap distribution. 

4. Methods for determining spatial trap distribution 

As has been shown in the previous sections, the full course of TSC depends on the 
energetic and spatial trap distributions. The latter does not have any significant influence 
on the dependence of the position of the TSC peak on the field intensity, sample thickness 
or heating manner and rate. In the case of dispersive transport, the spatial trap dis- 
tribution also has practically no influence on the shape of the final TSC decay. On this 
basis, the quantities describing the energetic trap distribution can be determined in 
exactly the same way as the ones used for traps uniformly distributed in the sample bulk 
(SamoC and SamoC 1980, Plans et a1 1981, Tomaszewicz and Jachym 1984, Schrader and 
Kryszewski 1985, Tomaszewicz 1985). Next, from equations (20) or (31) the shape 
function S ( x ) ,  characterising the spatial trap distribution, can be determined. In the 
following we shall illustrate it with the examples of energetic trap distributions (35) and 
(36), for non-dispersive and dispersive transport, respectively, as well as a linear heating 
scheme. 

For non-dispersive transport, from equations (20) and (21) one gets 

where the constant c1 depends on the trap parameters and the free-carrier mobility p,,. 
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It is clear that, after determining the trap depth %t on the basis of the dependence (43), 
it is possible, using equation (42), to determine also the shape function S(Z(T)). As 
follows from equation (8), the charge Q(T), collected till the sample temperature 
reaches T,  is expressed by the Ram0 theorem (Ramo 1939): 

Q(T) = Qo f(T)/L (44) 
where Qo = lo g is the total charge of carriers generated in the sample. Charge Q, 
corresponds to the area under the TSC curve, while charge Q(T) corresponds to the part 
of this area to the left of the point T. The last formula allows the determination of the 
position of the carrier centroid as a function of temperature, and thus the determination 
of the shape of the spatial trap distribution. 

Let us now consider dispersive transport. For a linear heating scheme, the demar- 
cation level go( T ) ,  defined by equation (25) ,  is described by the approximate expression 
go(T) = k(c*T - T*) ,  where c* depends on the frequency factor and the sample's 
heating rate (Tomaszewicz and Jachym 1984). Then from equations (31)-(34) we have 

T(t)  - e x p ( - c * ~ / ~ , )  for T > T, (47) 
where constant c2 depends on trap parameters and carrier mobility jj. It can be seen 
that after determining the ratio c*/T, from the dependence (46) or (47), one can, in 
principle, obtain the shape of the trap distribution on the basis of equations (45) and 
(44) in a manner analogous to that used for non-dispersive transport. However, it must 
be remembered that equation (31), from which (45) follows, is satisfactorily exact only 
for a slowly changing function S(x) .  In the general case, formula (29) may be applied to 
determine the spatial trap distribution. It requires calculating the shape of function @(t)  
on the basis of the energetic trap distribution (determined earlier) and assuming a simple 
analytical form of the spatial trap distribution with one or several parameters. The values 
of these parameters may be obtained by comparing the calculated TSC curves with the 
experimental ones. 

5. Concluding remarks 

In the present work we have discussed the influence of spatial non-homogeneity of trap 
distribution on TSC in the case of surface generation of free carriers. We have shown that 
for both non-dispersive and dispersive transport the initial increase of TSC is strongly 
dependent on the spatial distribution of traps. In particular, distinct polarity effects have 
been predicted. The analytical results have been found to agree satisfactorily with the 
results of Monte Carlo simulation of non-isothermal carrier transport for all the model 
spatial and energetic trap distributions considered, which allowed us to propose methods 
for determining the spatial trap distribution on the basis of the measured TSC. 

The second physically important case is the bulk generation of charge carriers in the 
layer. We do not see at present how to solve the transport equations with such an initial 
condition for arbitrary shape function S(x). The expressions for TSC may be found only 
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for some given a priori relatively simple functions S(x). Our Monte Carlo simulations 
of TSC in the case of bulk generation show qualitatively similar, but much less distinct, 
dependences of the peak shapes on spatial non-homogeneity in trap concentration. 
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